Induction of cyclobutane pyrimidine dimers, pyrimidine(6-4)pyrimidone photoproducts, and Dewar valence isomers by natural sunlight in normal human mononuclear cells.

نویسندگان

  • P H Clingen
  • C F Arlett
  • L Roza
  • T Mori
  • O Nikaido
  • M H Green
چکیده

Immunocytochemistry was used for the direct measurement of cyclobutane pyrimidine dimers, (6-4) photoproducts, and Dewar isomers in normal human mononuclear cells following irradiation by natural sunlight or by a FS20 broad spectrum UVB sunlamp. The induction of each type of photoproduct was detected following 30-60 min sunlight exposure or with FS20 fluences as low as 50-100 Jm-2. With increasing FS20 fluences, there was a dose-dependent increase in the binding of pyrimidine dimer, (6-4) photoproduct, and Dewar isomer-specific monoclonal antibodies. The relative ratio of Dewar isomer to (6-4) photoproduct antibody binding sites was much higher following exposure to natural sunlight than to broad spectrum UVB. With the (6-4) monoclonal antibody, a small increase in binding sites was evident after a 1-h exposure to natural sunlight. This remained relatively constant with further exposure. These results are consistent with the hypothesis that, following irradiation with natural sunlight, the majority of (6-4) photoproducts are converted into Dewar valence isomers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonrandom induction of pyrimidine-pyrimidone (6-4) photoproducts in ultraviolet-irradiated human chromatin.

Radioimmunoassays that detect pyrimidine-pyrimidone (6-4) photoproducts and cyclobutane dimers were used to determine the relative induction of these photoproducts in nucleosomal (core) and internucleosomal (linker) DNA in human cell chromatin irradiated with UV light. Cyclobutane dimers were formed in equal amounts/nucleotide in core and linker DNA, whereas (6-4) photoproducts occurred with 6-...

متن کامل

Escherichia coli DNA photolyase reverses cyclobutane pyrimidine dimers but not pyrimidine-pyrimidone (6-4) photoproducts.

The effect of purified Escherichia coli DNA photolyase on the UV light-induced pyrimidine-pyrimidone (6-4) photoproduct and cyclobutane pyrimidine dimer was investigated in vitro using enzyme purified from cells carrying the cloned phr gene (map position, 15.7 min). Photoproducts were examined both as site-specific lesions in end-labeled DNA and as chromatographically identified products in uni...

متن کامل

Kinetics of pyrimidine(6-4)pyrimidone photoproduct repair in Escherichia coli.

We compared the removal of pyrimidine(6-4)pyrimidone photoproducts [(6-4) photoproducts] and cyclobutane pyrimidine dimers (CPDs) from the genome of repair-proficient Escherichia coli, using monoclonal antibodies specific for each type of lesion. We found that (6-4) photoproducts were removed at a higher rate than CPDs in the first 30 min following a moderate UV dose (40 J/m2). The difference i...

متن کامل

Chemical investigation of light induced DNA bipyrimidine damage and repair.

In all organisms, genetic information is stored in DNA and RNA. Both of these macromolecules are damaged by many exogenous and endogenous events, with UV irradiation being one of the major sources of damage. The major photolesions formed are the cyclobutane pyrimidine dimers (CPD), pyrimidine-pyrimidone-(6-4)-photoproducts, Dewar valence isomers and, for dehydrated spore DNA, 5-(α-thyminyl)-5,6...

متن کامل

Structural Biology of DNA (6-4) Photoproducts Formed by Ultraviolet Radiation and Interactions with Their Binding Proteins

Exposure to the ultraviolet component of sunlight causes DNA damage, which subsequently leads to mutations, cellular transformation, and cell death. DNA photoproducts with (6-4) pyrimidine-pyrimidone adducts are more mutagenic than cyclobutane pyrimidine dimers. These lesions must be repaired because of the high mutagenic potential of (6-4) photoproducts. We here reviewed the structures of (6-4...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer research

دوره 55 11  شماره 

صفحات  -

تاریخ انتشار 1995